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Transforming Taxonomic Interfaces: “arm’s length” cooperative work and the
maintenance of a long-lived classification system
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If scientific research can be described as “arm’s length” cooperative work, then the sciences engaged in the creation and maintenance
of cooperatively built classification systems might be said to require extremely long arms; workers must reach across great distances
of time, space and awareness to independently contribute to the creation and maintenance of a conceptual infrastructure. This is
particularly the case for the field of biological taxonomy, in which researchers across the globe have, for more than three hundred
years, cooperatively developed a massive knowledge organization system describing all life on earth. As taxonomists move from
paper-based workflows to born-digital, data-first modes of publishing, new tools and approaches are needed to support their work. In
this paper, we present research conducted as part of the "Transforming Taxonomic Interfaces" project aimed at improving interfaces
for taxonomic software. We describe biological taxonomy in the context of CSCW, and identify key strategies taxonomists deploy to
facilitate loosely coupled cooperative work. We also contribute a discussion of semantic refactoring, a unique kind of “articulation
work” entailed in developing, maintaining, and migrating classification systems. This work has implications for the design and study
of knowledge organization systems and infrastructure, classification research, and for the development of general semantic web tools
and software as well as those specifically for biological taxonomy.

CCS Concepts: • Information systems → Collaborative and social computing systems and tools; • Human-centered com-
puting→ Computer supported cooperative work; Empirical studies in collaborative and social computing; • Applied computing
→ Life and medical sciences;

Additional Key Words and Phrases: classification; taxonomy; biodiversity informatics; articulation work; semantic refactoring; “arm’s
length” cooperative work; loosely coupled cooperative work
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1 INTRODUCTION

The study of computer-supported cooperative work in scientific research settings is an important subdomain of CSCW,
particularly as more and more disciplines adopt computational approaches to their work [Jirotka et al. 2013]. Prior
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2 Thomer, A. et al

research in CSCW has explored how scientists collaborate at a distance [Li et al. 2012; Sonnenwald 2003], share data
and software [Chin and Lansing 2004; Faniel and Jacobsen 2010; Pasquetto et al. 2016; Velden 2013; Vertesi and Dourish
2011], and build and maintain infrastructures [Karasti et al. 2010; Karasti and Blomberg 2017; Korn et al. 2017; Ribes
2014; Ribes and Finholt 2009]. Much of this research focuses on somewhat constrained instances of cooperative work:
cases in which researchers are working together as part of the same project, organization, or well-defined collaboration.
Fewer have explored the processes underlying community-scale CSCW in science, in which many researchers work
toward a common goal, but at an “arm’s length” distance from one another — that is, “without direct communication
and without necessarily knowing each other or knowing of each other, via a more or less shared information space...
comprising data, personal beliefs, shared concepts, professional heuristics etc.” [Bannon and Schmidt 1989].

While this sort of distributed-yet-cooperative work occurs in many disciplines, it is particularly fundamental to
fields seeking to build knowledge organization infrastructures such as classification systems or ontologies mapping the
composition of, and relationships between, different phenomena and entities. Disciplines such as biological taxonomy,
certain branches of chemistry, and library and information science aim to collectively produce shared systems of
classification [Price 1965]; other fields, such as biomedicine and ecology, necessarily draw on these classification systems
as key infrastructure that facilitates other work [Hoehndorf et al. 2015]. Though some of these classification systems are
managed by governing bodies, they are nevertheless contributed to by individual researchers working independently.
Researchers must cooperate across distances of space (in that researchers are rarely co-located), awareness (in that
they are often working independently and without direct communication), and even time (in that they must integrate
new contributions with sometimes very old prior work). When adding to or revising a classification, researchers must
reference and re-write existing classifications. The complexity of this work is only increasing as research communities
move from relatively slow, paper-based publishing paradigms, to more rapid, granularized, and born-digital publications,
in which research products include not just papers but also “nanopublications” and semantically-rich datasets (e.g.
[Kuhn et al. 2016; Mons and Velterop 2009]).

Here we describe a powerful example of “arm’s length” cooperative scientific work: the field of biological taxonomy.
One of the oldest and most foundational sciences, taxonomy is concerned with the description, naming and organization
of life on earth. Taxonomists fit the above definition of arm’s length cooperativework in that they are often geographically
distributed from one another, as well as physically far from the habitats and creatures that they study. In some ways,
they also work across large distances of time: not only do they sometimes work on projects that take years to complete,
but they must integrate their data with prior work that is sometimes hundreds of years old.

Through qualitative and design-based research methods, we show how taxonomists cooperatively-but-independently
work to create a knowledge organization system documenting earth’s biodiversity. Our goal is to contribute to
scholarship in CSCW, information science and biodiversity informatics while also designing better interfaces and tools
for taxonomic work. We ask: What mechanisms and strategies do taxonomists use to cooperatively maintain and update
systems of taxonomic nomenclature and description? What is the character of cooperative work in taxonomy, and what
can that tell us about CSCW in general?

We identify several characteristics of taxonomy that make its arm’s length cooperative work possible, and particularly
identify semantic refactoring as a unique and important kind of articulation work [Gerson and Star 1986; Strauss
1985] entailed in taxonomic maintenance. Given the longevity of taxonomic data, our findings have implications for
infrastructure studies and the study of long-term, “slow” scientific endeavors [Stengers 2018], as well as to scholarship
regarding the navigation, surfacing and maintenance, and reconciliation of classification systems. We conclude by
outlining implications for the design of systems to support arm’s length cooperative classification work.
Manuscript submitted to ACM
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2 “ARM’S LENGTH” COOPERATIVE WORK AND CSCW IN SCIENTIFIC SETTINGS

As briefly reviewed above, there is a substantial literature within CSCW on cooperative scientific research. Jirotka et al.
note the challenges of studying such settings, as well as the challenges of understanding what may be needed for such
collaborations to thrive:

The development of e-Science technologies and infrastructure requires methods of studying collaborations
that are often diffuse, geographically distributed, asynchronous, and sometimes without clear delineations
between users and developers [Jirotka et al. 2013].

“Arm’s length” cooperative work [Bannon and Schmidt 1989] is one such type of diffusion and distribution. It is distinct
from other kinds of asynchronous collaboration in that it is extremely loosely coupled; workers may not even know
each other, but nevertheless work toward a common goal. Work is often facilitated through the use of coordinative
artifacts that multiple actors interact “through,” such as documents placed in locations that others can see and access,
or specimens cataloged in a collection for common use [Schmidt and Wagner 2004]. The division of labor is typically
very clear and broken down into discrete units, thereby enabling people to work relatively independently [Bannon and
Schmidt 1989]. Via these strategies, workers are thereby able to keep down the well-known costs of CSCW — such as
coordination, articulation work and maintaining awareness [Olson and Olson 2000; Schmidt 2002] — but do not, of
course, reduce these costs to zero.

“Arm’s length” cooperative work is found inmany settings; in their study of the coordinative processes in architectural
design, Schmidt and Wagner declare that it is “the salient characteristic of contemporary cooperative work” [Schmidt
and Wagner 2004] (emphasis added). However, we believe that it may be particularly salient to certain kinds of scientific
cooperative work, especially long-term and infrastructuring endeavors. Where some studies have shown how time
matters in fast-paced environments such as hospitals [Reddy et al. 2006; Sarcevic and Burd 2009] and paper mills
[Auramäki et al. 1996], numerous studies of scientific collaboration have shown how slower paced, long-lived projects
exhibit a different kind of time sensitivity. Karasti and co-authors call out “infrastructure time” as a temporal orientation
that must exist in synergy with shorter-term “project time” scales in order to [Karasti et al. 2010]; others note that long-
term projects entail different coordination and knowledge transfer practices than fast-paced environments, requiring
ongoing stakeholder enrollment [Randall et al. 2015; Ribes and Finholt 2009], “anticipation work” to bring planned
work into being [Steinhardt and Jackson 2015], and on-going data curation and knowledge management [Ackerman
et al. 2013; Karasti et al. 2006]. In long-term projects, then, the coordinative artifacts — the records, specimens, artifacts,
publications, protocols and lab books — that facilitate cooperative work perhaps take on additional stress, creating a
need for more deliberate knowledge management and data curation processes.

2.1 Computer-supported cooperative classification work

Issues of infrastructuring are therefore closely tied to issues of knowledge management; this is especially the case
when the infrastructure in question is for information or knowledge management. Artifacts like databases, collections,
and data and metadata standards occupy a gray space between infrastructures and tools — they are both organizing
structures and artifacts in and of themselves. This duality has been explored in CSCW and related fields to an extent
(e.g. [Bietz and Lee 2012; Bowker 2000; Bowker and Star 2000; Hine 2006; Randall et al. 2011; Voida et al. 2011] among
others), as have issues of knowledge management from a CSCW perspective (e.g. [Ackerman et al. 2013]) however
we believe there is a growing need for research in this area, especially focusing on the cooperative maintenance and
creation of complex knowledge organization structures.

Manuscript submitted to ACM
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4 Thomer, A. et al

By knowledge organization structures, we mean artifacts such as:

• taxonomies, in both the general and strictly biological sense: systems of classification and the principles that
underlie those classifications [noa 2018]).

• controlled vocabularies: an “organized arrangement” of terms created by a community to promote consistent use
across records or data sources, and thereby facilitate information retrieval [Harpring 2010];

• and ontologies: a set of concepts and categories in a subject area or domain that describes their properties as
well as the relationships between different concepts; when serialized in a machine readable format such as the
Ontology Web Language (OWL), these relationships can be leveraged to support advanced information retrieval
and inference [Guarino and Welty 2004]

These knowledge organization structures are not mutually exclusive; a taxonomy might make use of a controlled
vocabulary in describing its terms, and a taxonomy might be serialized as an ontology. For instance, while the Periodic
Table of the Elements might be most familiar in its eponymously tabular form, it can also be expressed as a simple list,
a database, or an ontology in which the relationships between elements and their parts are explicitly expressed [Cook
2002]. Similarly, while another famous classification system, the Library of Congress Subject Headings (LCSH) has
historically been published as a series of large, red, leather-bound tomes containing lists of terms, it can now also be
accessed through the Library of Congress’ linked data service, which encodes the terms in a slightly more ontology-like
fashion by including information about relationships between terms and groups of terms [Congress [n. d.]].

The focus of this study — biological taxonomy — is one kind of scientific taxonomy. Biological taxonomies are
first and foremost unique because, in addition to organizing organisms for search and retrieval, they are meant to
model the system of biological life as it has evolved over time. The methods of creating and maintaining the taxonomy
therefore change along with biologists’ methods of discerning evolutionary relationships. Thus, where one might
think that biological taxonomies are somewhat “settled” or unchanging, they are actually constantly being updated,
as taxonomists discover new species or revise prior species descriptions in keeping with new methodological norms.
Biological taxonomies are additionally distinct from other kinds of taxonomies because individual components (species
descriptions) of the taxonomy are published in a somewhat piecemeal fashion. Taxonomists do not wait until they
have described all of life on earth to publish, but instead, publish species descriptions as they are written. There are
strict rules from governing organizations such as the International Code of Zoological Nomenclature (ICZN) and the
The International Code of Nomenclature for algae, fungi, and plants (ICN) for what counts as a legal scientific name,
but otherwise the work is carried out by researchers working somewhat independently. The unfinished taxonomy
still functions as vital infrastructure for biological and ecological studies, even though it is perpetually being edited.
Finally, biological taxonomy is unique for its longevity: the system of biological nomenclature has been maintained for
centuries, and is likely the oldest knowledge organization system on earth.

Knowledge organization systems, including biological taxonomy, are by no means unstudied. Indeed, classification
research is foundational to library and information science. However, much of the existing research does not focus
on the day-to-day work of creating or maintaining a classification system, cooperatively or otherwise. For instance,
while Bowker and Star’s seminal book, “Sorting Things Out” [Bowker and Star 2000] does discuss the work of creating
classifications, this issue is somewhat tangential to the authors’ main arguments. Several other researchers have similarly
considered classification systems as boundary objects (e.g. [Albrechtsen and Jacob 1998; Jansen 2013; Rotman et al. 2012;
Star and Griesemer 1989]); but again, they do not necessarily focus on the work of creating the classification system
itself, but rather, how others use the classification system to do other work. As we noted above, the field of library and
Manuscript submitted to ACM
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information science has extensively considered the work of classification maintenance, examining work-centered (e.g.
[Albrechtsen and Pejtersen 2003]), user-centered (e.g. [Losee 2006]) or warrant-based (e.g. [Bullard 2016]) approaches
to developing classifications (among many others that are unfortunately beyond the scope of this paper to review). We
wish to build on this work from a CSCW perspective, and take cooperative maintenance and creation of classification
systems – particularly, over the long term – as our central concern.

We do note that that there is a growing body of CSCW and HCI research around the collaborative and ongoing
development of ontologies. Ontologies such as the Gene Ontology and the Foundational Model of Anatomy Ontology
have become valuable infrastructure for biomedical informatics, and as such, have merited considerable investments in
development and maintenance in recent years [Hoehndorf et al. 2015]. These ontologies are often maintained and used
by globally distributed communities; and recent work has begun exploring the work needed to use and maintain these
systems over time. For instance: [Vigo et al. 2014] identify key design insights for ontology development tools; [Vigo
et al. 2015; Warren et al. 2014], outline activity patterns in the ontology authoring process. [Sarasua et al. 2015] point to
the cooperative ontological work entailed in projects like WikiData; and [Breitenfeld et al. 2018] discuss the need to
enable structured data creation by non-technical experts. However, we echo Randall et al.’s finding that that “modeling
approaches to ontology building tell us little about the practical organization of the work and how this relates to the
prospect of successful sharing” and that further ethnographic work is needed to understand these processes in more
detail [Randall et al. 2011].

2.2 Prior studies of biological taxonomy

While scholars in CSCW and related fields have previously studied different aspects of biological nomenclature and
classification, few have focused on the day-to-day work of workers in the discipline. For instance, Bowker considers the
role of biological taxonomies as scientific artifacts [Bowker 2000], as well as the conflicts that arise when communities
use different terms for the “same” species [Bowker 1999] but does not focus on the work of reconciling these differences.
Rotman et al. consider biological taxonomies as boundary objects, and while they discuss the cooperative work
taxonomies facilitate, they do not discuss the cooperative work put into their creation and maintenance [Rotman
et al. 2012]. Hine’s study of taxonomy as a cyberscience focuses on their adoption of information technologies for
communication, but not necessarily their day-to-day work practices [Hine 2008]. Recent work by Montoya and Erickson
considers the process of taxonomic reconciliation by discussing the consequences of taxonomies that don’t get updated
in the online resource, the Catalog of Life [Montoya and Erickson 2017], but while this is a valuable analysis, the
goal of the study simply is not to focus on taxonomists’ work practices. This prior work lays an important theoretical
foundation for the study of taxonomic work practices, but further research is needed to describe and support day-to-day
taxonomic work.

The bulk of the work on taxonomic work practices has actually been written by taxonomists themselves. There is a
robust literature considering everything from the population dynamics of the field [Joppa et al. 2011], to the implications
of a decreasing rate of new species descriptions written per taxonomist [Costello et al. 2013], to analyses of the revision
rate of taxonomies over time [Vaidya 2017], to the logical consequences and limits of applying biological names [Franz
et al. 2016]. Taxonomists have broadly acknowledged a need for modernized software, and modernized modes of data
publishing; many have particularly emphasized the need to use ontologies and other semantic web technologies to
make their data more machine readable and interoperable [Balhoff et al. 2013; Cui 2010, 2012; Deans et al. 2012; Yoder
et al. 2010, 2018]. However, further research is to understand how best to support the complex work of taxonomy, not to
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6 Thomer, A. et al

mention the complex work on ontology development and application. Here we intend to contribute to the construction
of that bridge, by discussing taxonomic work in a CSCW context.

3 APPROACH

Our research team includes information scientists, taxonomists, and software developers interested in understanding
and supporting the cooperative work of taxonomy development, use and management. Over the course of our four-year
project, we iterated between qualitative and design-based methods of research. This approach allowed us to conduct
research while also building community and improving existing tools. We summarize our data collection approaches,
as well as our methods of analysis, below.

3.1 Qualitative research methods: site visits and semi-structured interviews

Our study is grounded in qualitative research methods. We conducted ethnographic site visits and semi-structured
interviews with taxonomists in order to develop a detailed model of taxonomists’ work practices, software preferences,
and unmet needs. From 2014-2015, we visited five different sites and interviewed a total of thirty-four taxonomists.
Participants were initially recruited from collaborators on our funding grant, and then snowball sampled from that
group to include other “nearby” researchers, and to those using the taxonomic software1 produced internally by us and
our parent organizations; consequently, our participant demographics largely reflect the users of this software, and
are consequently skewed toward entomologists (particularly hymenopterists, who study wasps). Twenty-eight of our
participants worked in entomology; two in botany; two in mycology; one in invertebrate marine biology; and one in
invertebrate paleontology. However, given that entomology is one of the primary disciplines engaged in taxonomic
description, we believe that they make an excellent user community to ground this research in. Only seven of our
thirty-four taxonomists identified as female; this may also reflect the demographics of the taxonomic community
[Jackson 2015].

Site visits lasted three to five days each. During visits, we observed participants while they worked; sat in on
meetings; and photographed their workplaces. We drew on methods of rapid ethnography [Millen 2000], which involves
a constrained research focus, using key informants, and capturing rich field data using multiple perspectives. In semi-
structured interviews, we asked participants to demonstrate and describe their workflows in greater detail. We also
asked them questions about their data management practices; decision making strategies; preferences in hardware
and software; frustrations and successes in taxonomic data creation and management; and other details about their
day-to-day work (see Appendix A for our interview script and site visit guidelines).

3.2 Design-based research methods: rapid prototyping and design hackathons

In addition to our qualitative data collection, we drew on design-based methods of research, including participatory
design and rapid prototyping. Our research team met weekly and reviewed notes and memos from site visits as they
were completed. We developed a preliminary conceptual model of taxonomists’ work practices and common information
interactions, as well as a rough list of issues they encountered in their work. We then brainstormed interface ideas
that might better support their needs; we additionally used the process of designing interfaces to refine our conceptual
model of work practices.

1http://taxonworks.org/
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After completing all site visits, we held a three-day Interface Design Hackathon. The goal of the Hackathon was to
further refine our initial conceptions of taxonomists’ work practices, while also directly involving taxonomists in our
design work (described previously in [Thomer et al. 2016; Yoder et al. 2018]). The Hackathon was also intended to build
community and encourage on-going collaboration between our team and taxonomists. Given that much of taxonomic
software is developed and maintained by taxonomists themselves, we felt it was important to involve them as directly
as possible in our work. Hackathons have become a common method of software development in the biosciences (see
[Katayama et al. 2010; Lapp et al. 2007]), and have been shown to provide participants a means to identify problems,
define community goals and priorities, and share tutorials and technical knowledge. As such, this was an appropriate
format for collaboration with this community.

Twelve participants attended in total, including four project staff, six taxonomists who had previously participated
in interviews or site visits, and three taxonomists from sites we had not visited. In planning the Hackathon, we drew on
methods of participatory design [Blomberg and Karasti 2012]. We asked participants to complete three-part workbooks,
designed to capture specific details about their work practices as well as their interface designs. The workbooks consisted
of: 1) a use case template; 2) a flowchart template; and 3) a space for wireframe interfaces (see Appendix B for the full
workbook template, and Figure 1 for a small excerpt from a completed workbook). The workbooks were hosted on
Google Docs, and participants were pointed to flowcharting and wireframe design tools, such as LucidCharts, Balsamiq
and VUE. We also provided participants with materials for paper prototyping.

Teams self-organized to fill out workbooks. Sixteen workbooks were completed by the end of the Hackathon, and
four more were initiated but not completed. On the last day, participants voted on which of the use cases they would
like to see developed first. Paper prototypes were digitally photographed, and inserted into the digital workbooks.

After the Hackathon, our project team resumed our weekly-to-biweekly prototyping meetings to further review
notes, and to iterate on designs generated through the Hackathon. We translated and refined these paper prototypes
into formal wireframes, and worked with software developers to build prototypes of these interfaces in our testbed
software environment. Approximately three designs were integrated into working prototypes, implemented in this
project’s associated software environment and further refined through user testing [Yoder et al. 2018].

3.3 Analytic approach

In keeping with our rapid ethnographic approach, much of our preliminary analysis was conducted through our research
team’s meetings over the course of this project; as described above, this allowed us to develop a heuristic, yet grounded,
understanding of our participants’ work practices. By iterating between analysis, data collection, and design work, we
were able to pivot quickly to test or refine new ideas and insights as they emerged.

We followed this heuristic evaluation with a more structured analysis of interview transcripts and ethnographic
memos. After all interviews and site visits were completed, we used Dedoose to code notes from interview transcripts
and notes from site visits. While we largely took a grounded approach in this work (coding transcripts for emergent
themes, which were then refined through discussion and comparison of codes [Charmaz 2014; Glaser and Strauss 2017]),
we also paid particular attention to themes that emerged during our preliminary analysis, such as issues of workflow,
data and concept management. Transcripts and notes were coded by all three authors of this paper; conflicting codes
were discussed in project meetings and brought into accordance.
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4 RESULTS: CHARACTERIZING THEWORK OF TAXONOMICWORK

Derek De Solla Price placed biological taxonomy into the category of sciences producing a body of knowledge, and a
system of classification that is “optimistically considered more or less eternal” [Price 1965]. We found that though this
view of taxonomy is not necessarily wrong, it is also not quite complete. The researchers we spoke with were quick to
note that while a broad goal of taxonomy is indeed to develop a collectively agreed upon Book of Life, the emphasis is
increasingly on a plurality of books - rather than one monograph to rule them all. There are necessarily many ways
to identify and constrain what counts as a species, often depending on the type of organism — describing a microbe
requires a different set of methods, tools and terms than describing a tree — as well as the resources a taxonomist has at
their disposal — some labs may not have the equipment or staffing to support genetic sequencing. Therefore, there are
necessarily many ways to classify species and their relationships between each other, which must be reconciled.

Through our site visits, interviews and design-based engagement with taxonomists, we refined the following account
of the work of taxonomy. We first describe the iterative process of refining and revising taxonomic descriptions. Then we
describe how participants come to learn these data practices through various enculturation practices. Throughout, we
present a selection of interfaces designed by us and our participants to underscore the kinds of information interactions
entailed in taxonomic work.

4.1 Writing taxonomic descriptions: iteration and revision

The fundamental task in taxonomy is to create species descriptions: semi-structured (referred to as “telegraphic”)
narratives describing what makes a group of organisms unique. For instance, in the following example from a description
of a kind of near-microscopic wasp, the author describes details of the animal’s teeth, wings, wing hairs (setae), as well
as differences in the shape of the tail end (gaster) in male and female specimens:

Subfamily TETRACNEMINAE. Mandibles bidentate; forewing without a filum spinosum; setae on basal
cell of similar size to those beneath apex of venation.... FEMALE - gaster with last tergite more or less
shield-shaped or triangular, its anterior margin almost straight, hardly curved [Noyes 1988]

The “semi-structured” aspect of species descriptions refers to both their form and content. In terms of their form,
descriptions are often organized consistently, listing anatomically equivalent elements in the same order from one
description to the next. In terms of content, taxonomists typically seek to use controlled vocabularies that are recognizable
to their peer group (the tensions around selecting controlled vocabularies are described further below). Species
descriptions can be published individually, butmore oftenmultiple descriptions are published in one article ormonograph
(see the journals Zootaxa2 and Zookeys3 for examples of these publications). Descriptions for very large groups of
organisms may even be published in a series of books. For instance, one participant is currently in the midst of publishing
an anticipated ten volume series on a hyperdiverse group of chalcid wasps, which he anticipates will take ten years to
write.

Descriptions are written through a highly iterative process of collecting specimens (both from the wild and from
existing museum collections) and identifying diagnostic characters (aspects of an organism’s anatomy) that distinguish
one group from another. Just as the presence of fur helps to distinguish mammals from reptiles and birds (Table 1), the
presence of a mostly straight anterior edge of the last segment of an insect’s “gaster” (tail end) helps to distinguish
female from male Tetracneminae. Descriptions are sometimes created along with, or via the proxy of a character matrix.

2http://www.mapress.com/j/zt/
3https://zookeys.pensoft.net
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Table 1. A very simple character matrix. Each X notes the presence of a “character” in an organism. These matrices are used to begin
working toward a heirarchical classification of organisms into groups. In this case, the taxonomist would need to consider whether a
Platypus would be better grouped with Lions and Zebras rather than its fellow egg-layers, the Lizards.

Taxon has 5 fingers has fur lays eggs

Lion X X
Lizard X X
Platypus X X X
Zebra X

Fig. 1. An excerpt from one of our Hackathon use case notebooks describing a proposed Matrix Editing interface. In this interface,
each data point in a character matrix (such as the X’s in Table 1) would be hyperlinked to supporting data files, thereby improving
the reproducibility of a taxonomic description.

These matrices have species or taxa as rows, and characters (sets of related states) as columns. Individual cells are
filled with data (i.e. the taxonomist’s observations). In our design work, we and our participants imagined several
interfaces for character identification and definition, as well as character matrix manipulation and design. We found a
particular need for tools that captured provenance, such as links between various data sources, and thereby recorded
why exactly the author considered one wasp’s tergite more or less triangular than another’s. One design from the
Hackathon included a tool for “Simple Matrix Editing with considerations for character exploration,” and emphasized
the need for a Google-doc-like level of collaborative capacity, combined with a database-like level of data management
and storage (Figure 1).

4.1.1 Iterative workflows. The process of identifying and classifying characters varies from taxonomist to taxonomist;
we observed considerable differences in our participants’ workflows, and in interviews, they described their field’s
practices as being quite diverse. Some take notes on potential species groups in the field, as they gather specimens;
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others wait until they are back in the lab. Some first group specimens by eye, and then write down key characters;
others take a more structured approach and survey specimens one-by-one and fill in a character matrix as they go.
However, despite this variation, every taxonomist we spoke with agreed that the character definition process was
necessarily iterative. In their words:

I do a minimum of two or three passes for specimens. First one is to get an idea. The second one is to look
at the limits, then I test my original hypothesis with more data. (J-1-TOR)

I’ll finish something, and I might get more material about what I think I’ve finished. I take [the specimens]
back and go through the same process again of what I’ve written before and see if they come out okay.
(N-3-NHML)

You reassess the characters so you go through them. We all have a notion - well, I have a notion - of which
things should fit together when you look at your specimens or your species... And then you run your
analysis and if everything comes out crazy then you have to reassess; you have to go back and look at it
again because you have to make sure that it’s crazy and it’s not just bad results. Yeah, you go through it
again until you’re sick of it basically. (D-2-NHML)

Sometimes in reading literature you find another author described a character you didn’t see, so you go
back to see if it’s there or if you missed it. (R-1-IL)

Character definitions and species concepts are thus something that emerge from repeated sorting and review. This
process is not unlike that of developing a grounded theory, with the caveat that our taxonomists may be somewhat
more abductive in their approach than grounded theory prescribes: they bring their training and prior experience with
a group of organisms to bear on their classifications. When they talk about assessing whether data are “okay” and not
just “bad results,” they are drawing on their prior experience with this group and dataset to make a judgment call about
the quality of the analysis.

We noted that taxonomic work in general, but species description workflows in particular, have a very visible
and inherent materiality to them. Physical specimens are the primary data source, and no amount of photography
or digitization will replace them. Thus, taxonomy is certainly computer supported, but not by any means computer
dominated; and taxonomists’ work must bridge the digital-physical divide by iterating between a wide range of data
sources and tools: physical specimens, and physical photographs, microscope slides, paper grids, old books, digital
images, DNA sequences and databases (Figure 2). Our design work focused on brainstorming ways of making this
bridge a bit more seamless; for instance, creating labels that were both human- and machine-readable, or lightbox-like
interfaces that would allow taxonomists to group and categorize their digital data as easily as their physical (Figure 3).

4.1.2 Iterative Revisions. Taxonomists are also engaged in a longer-term kind of iteration: the review and revision
of prior taxonomies. Participants emphasized that each description that they write is a hypothesis, which will be
tested and re-tested by future researchers. Revisions are necessary when older descriptions are not clear, thorough, or
otherwise complete enough to be usable in modern research. For example, several participants noted that they were
working on “molecular revisions” of groups, in which DNA sequences are taken from specimens and used in addition
to morphological characters to revise a taxonomy.

In other cases, revisions were motivated by the discovery of new organisms, and prior classifications had to be altered
to include them. The process of defining characters involves not just looking at specimens, but also at prior descriptions
of specimens, and then making a decision about what characterizations to prioritize. One participant described this as
Manuscript submitted to ACM
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Fig. 2. A taxonomist’s workspace, including a computer, books, specimens, a microscope and many other materials. Photograph by
Chris Nixon.

Fig. 3. A virtual light table. The table space include images, and symbolic representations of specimens, collecting events, and an
anatomy ontology arranged in a freeform open space. Basic functionality includes adding, highlighting, selecting, manipulating, and
annotating the current contents of the table (bottom). Previously published in [Yoder et al. 2018]

forcing the revising author to decide what prior work and prior data to carry forward: if “one description gives shape,
color, and shell thickness, and the other gives you description of shell sculpture and hinge teeth, like, ‘it is heavily
sculptured and the hinge has three teeth’ ” (R-1-IL) the revising author would need to decide which (if any) of those
characters to use in the revised descriptions.

4.2 Enculturation in data practices: selectively controlling vocabularies, and passing down tools

When asked about their workflows, our participants inevitably described their training. Participants described a strong
tradition of apprenticeship in taxonomy, through which junior taxonomists are enculturated in their mentors’ data
practices. During site visits and in our Design Hackathon, several participants said that they used the workflows,
techniques and tools that they did at least in part because their mentors trained them that way, and fondly described
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their mentoring relationships and connections of practices in different labs. One participant said that this may be part
of the reason behind the proliferation of idiosyncratic methods and software preferences in taxonomy, noting that,
“Many people are using tools that were handed down by their predecessor or that they designed themselves” (R-1-IL).

The extremely loose coupling of the collective endeavor of taxonomic classification permits these varying schools of
workflows and personal idiosyncrasies. Provided the product (a species description) follows established forms, consider-
able variation in the process (a taxonomist’s workflow) is tolerable without causing much disruption. Consequently, the
collective result is robust under substantial diversity of practice, again contrasting with smaller, more tightly coupled
scientific collaborations. For taxonomy, this is both a challenge to widespread systematic adoption of new practices and
technologies, but also an opportunity for small scale innovation.

As we described above, in writing a description taxonomists must describe anatomical characters as clearly and
unambiguously as possible, so that others can use them to identify specimens or determine whether they have discovered
a new species. However, taxonomic data’s extremely long lifespan is in itself an obstacle: the descriptions can last longer
than our common understanding of the terms used to write them. Though individual taxonomists try to use preexisting
vocabularies when possible, often they are too arcane to be clarifying. For instance: the terms “tomentose”, “floccose,”
“arachnoid,” “hoary,” and “lanate” all refer to kinds of fuzziness that might be seen on a leaf [Armstrong 1999] – yet,
their use may confuse more than inform a modern reader. Thus, while individual taxonomists strive for consistency,
they still must make hundreds of ad hoc decisions about which standards to adhere to, and which to ignore. As one
botanist explained:

We have some standard references that we have, standard botanical Latin. That’s a synthesis of what
Linnaeus used and what’s out there from way back. It gives you the roots, but it’s only useful if everyone’s
using that same reference. The problem is they’re not. Leaf shape can be terrible. Someone’s “ovate” is the
other person’s “elliptic” or “lanceolate.” Those characters, some people don’t use fancy labels because they
don’t believe it’s distinct from whatever [word] they just imagine. [M-1-NHML]

Participants also explained that they chose terms based on the preferences of immediate colleagues. As one summarized:

If other people have used other terms that I’m not used to... if they’re good, I will take them. But if all my
colleagues use a different term [than other people], those are the people I’m communicating with, so I
will probably use the term that [we’re all] familiar with. (D-2-NHML)

Thus, vocabulary selection is partially driven by the need to create descriptions that clearly express concepts and match
historic terms, but is also driven by each taxonomist’s in-group norms and specific training. Taxonomists select terms
based on both historical precedent and their own best judgment about the precision and interpretability of a given word
for its intended audience; in doing so, they effectively modernize the vocabulary of taxonomy on a case-by-case basis.

4.2.1 Using images to bridge differences in vocabulary use. Given the unquantifiable nature of many anatomical
characters (e.g. “slightly curved,” “fairly sculpted,” and so on), images are critically important to describing diagnostic
anatomical characters, and are often used to help bridge the gap between different terminological cultures. As one
participant (who works on moths) explained, images are important in clarifying how terminology is being used by
researchers with different backgrounds:

When we get together and we talk about wing patterns, we’ve been brought up on different literature ...
There are differences in how we assign the terminology that we use so we will have to either use images
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Fig. 4. A wire frame of an interface for image annotation. A user would use the cursor to select some point of the image, and right
click to bring up a menu of tagging options. In this example, an image of an insect leg is being annotated with descriptions of its
color; the specific terms being used are drawn from an underlying ontology.

Fig. 5. A wire frame of an interface for to add visual annotations to qualitative terms. The taxonomist would use the sliders above to
create simple images to clarify their use of fuzzy terms. Previously published in [Yoder et al. 2018]

with drawings on top and say this is what I mean because the characters have to be consistent when we
score them because if not, they make no sense in the end. (D-1-NHML)

Despite their utility, the ability to rely on images rather than (or in addition to) text as the primary mode of scholarly
communication is fairly new; there have historically been limits on the number of images that could be included in a
paper-based publication either due to page constraints or the high cost of color printing, which are now being lifted
thanks to the advent of electronic publishing. Images used in taxonomy range from photographs, micro-photographs,
and hand drawn and computer-aided illustrations of specific anatomical features over the course of their work. The
specific kind of illustration used often depends on the qualities of the organisms being discovered: very small insects
who can only be determined through characters found on internal organs or genitalia will need to be dissected, slide
mounted, and photographed through a scanning electron microscope; whereas larger organisms can simply be mounted
and photographed with a standard digital SLR.

In our design work, we and our participants imagined interfaces that would support the semantic annotation of
images (Figure 4). Users would import an image, and drag-and-drop qualifiers to different aspects of the image. These
terms would be linked to anatomical ontologies; users would thereby be able to create semantically rich data, linked to
images, without necessarily having to interact directly with an ontology. We additionally designed interfaces that could
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add some kind of visual anchor to qualitative descriptors such as “sparse” or “curved,” thereby allowing taxonomists
to continue using natural language while nevertheless ensuring that their meaning is communicated (Figure 5). This
would make it possible to continue taking advantage of the qualitative richness of text, while reducing ambiguity (and
improving machine readability) through a visual aid or quantitative measure.

5 DISCUSSION

5.1 Taxonomy as an exemplar of arm’s length cooperative classification work

This project contributes a rich description of the practice of biological taxonomy, and several insights into classification
work and maintenance with implications for CSCW and related fields.

First, we believe that biological taxonomy should be viewed as an exemplar of a successful large-scale infrastructure
project. The process of naming and classifying organisms is one of humankind’s longest term endeavors; and the formal
system of taxonomic nomenclature has been in continual development for nearly three hundred years. Taxonomy’s
global and organizational scale encompasses the world community of taxonomists; even very large projects such as
CERN or the Long Term Ecological Research Network cannot match that scale. As such, despite the challenges other
authors have noted in using taxonomic classification systems [Rotman et al. 2012] or in keeping individual instances of
nomenclature up-to-date [Montoya and Erickson 2017], the discipline of biological taxonomy nevertheless represents a
major success story in infrastructure maintenance, and a potential counterpoint to studies of failure and breakdown.
Taxonomists might be viewed as a class of “maintainers” [Russell and Vinsel 2016]: through their iterative workflows
and on-going revision of the classification system, they ensure that the conceptual infrastructure that is taxonomic
nomenclature stays up and running.

Second, we find that the loosely-coupled cooperation of taxonomic work is facilitated by a number of factors: the
clear divisions of labor within the field (in that researchers or research labs tend to focus on a relatively narrow range
of taxa); strong apprenticeship and mentorship traditions; and the reliance on a common set of norms and standards for
data formats and quality, but not necessarily workflows (for instance, describing anatomical characters in a regular
order; adhering to guidelines for publication from the nomenclatural bodies). The standards that do exist are somewhat
“loosely-coupled” as well; vocabularies are controlled, but not at the expense of expressiveness. This combination of
community norms with a discipline-wide understanding that one must use one’s best judgment makes it possible for
taxonomists to work alone or in small teams while contributing to a collective and growing whole. This community’s
coordination and enculturation practices could inform other fields of cooperative knowledge structure or classification
work, including crowdsourced work; citizen science; and scientific ontology manipulation and creation. These loosely
coupled coordination practices may additionally be informative to communities engaged in more tightly managed
classification and vocabulary management (for instance, metadata standards bodies, or other scientific communities
who create and rely on controlled vocabularies).

Third, the inherent and quite literal materiality of taxonomic work makes the community an excellent testbed for tools
that broach the physical/digital divide. Though taxonomists image, measure, extract DNA from, and otherwise transform
physical materials into digital data, the physical specimens must nevertheless be preserved for future examination
and reuse. Taxonomists also iterate between physical data processing (grouping, arranging, observing, dissecting,
labeling specimens) and digital data processing (defining characters, creating matrices, writing descriptions, annotating
images). They largely link the physical/digital worlds through labels and identifiers, but there is opportunity to develop
tools to make this jump between data manipulation modes more seamless. In our on-going work, we are exploring
Manuscript submitted to ACM
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the application of augmented reality interfaces to support taxonomic work, and hope to publish the results of these
endeavors soon; we believe there is potential for innovative work in this area.

Fourth, the kind of data that taxonomists produce is in many ways an ideal test case for the born-digital publication
of linked data or “nanopublications” [Kuhn et al. 2016; Mons and Velterop 2009]. As demonstrated above, taxonomic
descriptions entail the manipulation and creation of a wide array of controlled vocabularies, nomenclatural bodies, and
provenance chains. In many ways, this data is already “Linked” — at least, conceptually — which has spurred many
taxonomists to argue that they need to move to a linked data, semantically-annotated publishing paradigm [Balhoff
et al. 2013; Cui 2010; Deans et al. 2012]. The taxonomic community may be an ideal use case for the development of
tools for the management and creation of linked scientific data. Given that current methods of producing linked data,
whether taxonomic or otherwise, tend to require fairly advanced knowledge of the encoding standards themselves,
this approach has thus far been limited to people with extensive training in information and computer science. The
interfaces we have developed have focused on capturing the semantics of taxonomists descriptions without forcing
taxonomists to become experts in ontological application. We hope that the insights we have gained from this work can
aid in the development of other tools to support the use of semantic technologies by non-semantic-technologists.

5.1.1 Semantic refactoring: data migration through articulation work. We wish to particularly highlight one aspect of
taxonomic work that is key to both its longevity, and to the facilitation of taxonomists’ loosely coupled cooperative work.
We see the process of revising classifications as a form of data migration. By revising older classifications, taxonomists
migrate data from historic to modern formats. The practice of revising — rather than replacing — the classification
makes it possible to build on prior contributions while also enabling the dataset of species descriptions to renew, to be
sustainable, and to remain of current value.

This revision process entails substantial articulation work. Here we mean “articulation” in two somewhat more
literal senses than it is sometimes used: articulation as in enumerating — “the act of giving utterance or expression” to
morphological characters and species concepts — as well as articulation as in “jointing or interrelating” these concepts
into a classification or nomenclatural system [art 2018]. Both forms of articulation work require different kinds of
information interactions, which we found to be sorely under-supported by current software. Articulation-as-in-defining-
terms entails reviewing existing terms and their uses, consulting with community members, and selecting and defining
new terms (or version of terms). Articulation-as-in-interrelating entails manipulation of species descriptions and
conceptions; navigating historical classification and nomenclatural structures; and drawing relationships between these
historical and new concepts in a human and ideally, machine, readable way.

We might think of these unique kinds of articulation work as a process of semantic refactoring: the piecemeal practice
of making semantic representations and structures clearer, more efficient, and more usable to a community. We borrow
this term from computer science, in which it has previously been used to describe the process of replacing code with a
clearer, but equivalent version (see for example [David et al. 2017]). Here we use “semantic refactoring” to refer to the

process of revising a controlled vocabulary or classification structure in response to changing norms or user needs. The
semantic refactoring entailed in revising a taxonomy requires updating the content of a species concept as well as the
relationships between species concepts. Semantic refactoring makes it possible to carry forward the prior “codebase” of
a classification system while correcting, amending, and building upon it. Though some of the processes described here
are unique to taxonomy, we believe that semantic refactoring is likely central to other long-lived classification systems
or ontologies. Updating subject headings in the LCSH, for instance, similarly involves reviewing and revising terms,
their definitions, and their placement within a classificatory structure in response to changing use and users.
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Table 2. Implications for design, summarized

Taxonomic work practice or characteristic Implication for design

Diversity in workflows
Standardization should focus on data and publi-
cation formats but not workflows; quality rather
than strict content standards.

Loosely coupled cooperative work: independent re-
searchers working toward a common goal

Systems and workflows should be divided into dis-
crete, well defined tasks.

Semantic refactoring; need to reconcile conflicting
classifications, or new and old

Methods of visualizing and comparing taxonomies;
version control and provenance tracking; collabo-
rative ontology annotation tools; tools to review
terms and definitions, tools to visualize history of
concepts and their use.

Bridging the digital/physical: work takes place both
in and out of a computer

Simple machine- and human-readable labels; aug-
mented reality tools for data manipulation and
management.

5.2 Implications for design

This project has generated several broad requirements — and indeed anti-requirements — of taxonomic work: function-
alities that taxonomists do and do not want or would struggle to integrate into their work, and implications for design
of those functionalities (Table 2). There is a clear need to account for the idiosyncrasies of taxonomists’ individual
workflows, as influenced by the needs of the specimens being analyzed and the work styles inherited through their
training. As found in numerous other settings, a one-size-fits-all solution is unlikely to be widely adopted. What is
needed is a design for incremental adoption and support for substantial customization.

There was also great interest amongst taxonomists in designs that facilitate digitization and digital data curation, but
with the caveat that these occur within an irreducibly material kind of information work. Specimens are central, and
taxonomists are not in the business of digitizing the physical away. Instead, they aim to work toward a more born-digital
work process, in which specimens can be represented digitally and annotated with images, text and literature reviews.
They would also like to support pairing structured data representations (e.g. linked data) with free text descriptions, so
that the resultant description can be computationally analyzed and reasoned over. Computers are not seen as a way of
replacing existing workflows, but rather, augmenting them.

5.2.1 Implications for other cooperative classification workers. Findings from this study have implications for other
non-biological and even non-scientific taxonomies and classification systems as well. First, as noted above, the loosely
coupled nature of taxonomy is key to its longevity, and other domains of classification or knowledge organization
work may wish to explore this model. While there are governing bodies that publish rules for what counts as a valid
classification and name (e.g. the ICZN), classifications are not solely written by that body. While taxonomists are
committed to using common terms and controlled vocabularies, they nevertheless a understand that these need to be
altered over time, and that boundary objects such as images and annotations are needed to truly communicate what is
meant by a term. These practices may be adoptable by other communities.
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Further work on, and better tools for, semantic refactoring in a CSCW context is needed. There has been some
research in this area, but more is needed. For instance, [Puente and Díaz 2012] look at using mindmaps in wiki refactors;
Greenberg et al., discuss the need for a “community-driven metadata vocabulary application” that would support
collaborative definition negotiation and term selection [Greenberg et al. 2013]; and Kunze et al. describe a system for
supporting the evaluation of “digital stickiness” of a term or identifier — basically, a way of assessing the potential
longevity of a resources [Kunze et al. 2017]. These approaches are promising but further workflows and workbenches
are needed that tie these processes and resources together, and thereby better support the articulation work of semantic
refactoring.

6 CONCLUSION AND FUTUREWORK

In this paper, we discussed biological taxonomy as exemplary of extremely long-term, cooperative scientific classification
work. We contribute a rich description of taxonomists’ work practices, and the implications those practices have for
design of cooperatively developed classification systems, both for taxonomists and for other knowledge organizers. We
find that taxonomists rely on a unique kind of articulation work — semantic refactoring — to maintain and migrate
their controlled vocabularies and classifications over time. We believe that semantic refactoring is also key to the
maintenance of other classification systems, and that supporting this work will be critical in also supporting classificatory
infrastructure. In our future work, we hope to further refine our understanding of taxonomic work practices through
further design and testing of our interfaces; we additionally hope to compare taxonomic work practices to those of
other cooperative classification communities (for instance, community-developed folksonomies, or the LCSH). We
additionally hope to explore the role that taxonomists’ values, politics and priorities play in the decisions they make in
their classification work; findings to this end were emergent in our data but out of scope for this paper.

We conclude by noting that although infrastructure may be much easier to see when it breaks down [Star and
Ruhleder 1996], taxonomy provides an example of its visibility through successful resilience and longevity. Schmidt and
Bannon cite Neurath’s metaphor of scientific collaboration as “akin to sailors rebuilding their boat while at sea, without
being able to start from scratch and without having recourse to an overarching plan” [Schmidt and Bannon 2013]. This
is a most appropriate metaphor for taxonomic work. Having identified the proverbial Ship of Theseus, in future work,
we hope to further understand how the sailors managed to rebuild their boat while at sea, and over so many decades.

A SITE VISIT GUIDELINES AND INTERVIEW SCRIPTS

A.1 Observation guidelines for site visits

• Do they setup a workflow of many set steps, or do the steps seem to be randomly accessed?
• What does the workspace look like (take pictures if allowed)? What items/tools are immediately near-at-hand?
• What tools (books, spreadsheets, computers etc.) are used to record observations?
• What tools are used to manipulate specimens being observed?
• How many steps are between the “aha” moment and the final representation of the anatomy/morphology being
observed?

• Some work things out smoothly, some do not; particularly note the latter.
• What processes appear to be “linear” vs. “iterative”? Particularly note the latter
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A.2 Interview questions and prompts

Background:

• Please tell me about what you study. What kinds of organisms? What characteristics?
• How many years of experience do you have?
• How did you learn to describe morphology/anatomy?
• How do you teach others to learn morphology/anatomy?
• How many species have you described?
• What year did you describe your first species?
• What year did you identify your first species?

Workflows and decision making:

• I’m trying to understand the details of how taxonomists do their work and the decisions they make along the
way. Could you talk me through your workflow?

• Could you draw me a schematic of your workflow, i.e. a workflow diagram?
• How do you standardize your descriptions across species in a single work?
• How do you standardize your descriptions between works?

Data collection, management and creation:

• How do store your observations? In what format?
• How do you make your observations available to others?
• At what point in your workflow do you record anatomical descriptions
• When do you begin to describe a taxon?
• How do you know when it is time to describe species
• How much time does it take to describe a species
• What is your goal when you describe a species?
• How are you “sure” that someone else understands what you do? What do you describe?
• How do you deal with visualizing your description’

Concluding questions

• Some people have said to us that they see taxonomic work as a process of standardizing. What do you think?
• What frustrates you about doing taxonomy?
• Is there a particular “technology” that you know others have that you wish you had? That nobody has but you
wish existed?

• Do you know of anyone else that might be willing to be interviewed?

B HACKATHONWORKBOOK TEMPLATE

Title

Initial contributors:
Note: Consider including words that might classify the use-case

Background & Goals

• For the purposes of this hackathon is this a “big”, “medium”, or “little” use case
Manuscript submitted to ACM
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• Very brief, a short story, three or four sentences that lets both domains (biologists/developers) get a feel for the
problem;

• A statement or description of where it fits in the design space (e.g. this is about manipulating matrices?) Why do
you want to do this?

Workflow/Approach (Relevant Use Cases)

• A bullet list and/or (UML-style) diagram that itemizes both human and computational steps in data collection,
processing, and analysis

• Each step should seek to address the following - 1) input, 2) process, 3) output

Constraints

• A list of challenges, with a focus on the technical issues (e.g. must interoperate with a certain database)
• May include definition of core concepts (e.g. must be applicable to specimen level data; must allow for quantitative
states)

Implications for Design

• Think of this as a brainstorming phase: how might we design tools to achieve our research goals (within the
above constraints)?

• What do you want? what would you like?
• What don’t you like about what you have to do currently?
• Computers are really good at remembering, doing boring repetitive things, checking, counting, keeping track of
things, etc — where do you have to do things like that?

• Are there new technological opportunities that we might take advantage of (e.g. using ontologies, using mi-
crophotography, other tools)?

• Detail functional requirements (define what must minimally happen)

Proposed widgets/interfaces

• Must include an illustration/wireframe
• May reference specific implications for design
• Should identify preconditions for using this widget (e.g. a hierarchy of taxonomic names is available)

Summary for software developer

Is done last. Consider- in formulating this use case where did you spend most of your time? What’s surprising about
this use case? What’s a priority derived from this use case? What’s counter-intuitive to the assumptions a developer
may have?
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